skip to main content


Search for: All records

Creators/Authors contains: "Liu, Lu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 5, 2024
  2. Free, publicly-accessible full text available December 20, 2024
  3. SUMMARY

    Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant,aberrantlybranchedtrichome 3–1(abt3‐1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed thatabt3‐1is a new mutant allele ofAuxin resistant 1(AXR1), which encodes the N‐terminal half of ubiquitin‐activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version ofROP2(CA‐ROP2) caused a reduction of trichome branches, resembling that ofabt3‐1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showedAXR1genetically interacted withROP2and mediated ROP2 protein stability. The loss ofAXR1aggravated the trichome defects ofCA‐ROP2and induced the accumulation of steady‐state ROP2. Consistently, elevatedAXR1expression levels suppressedROP2expression and partially rescued trichome branching defects inCA‐ROP2plants. Together, our results presented a new mutant allele ofAXR1, uncovered the effects ofAXR1andROP2during trichome development, and revealed a pathway ofROP2‐mediated regulation of plant cell morphogenesis in Arabidopsis.

     
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  4. Abstract

    The Arabidopsis (Arabidopsis thaliana) TRANSPARENT TESTA GLABRA2 (TTG2) gene encodes a WRKY transcription factor that regulates a range of development events like trichome, seed coat, and atrichoblast formation. Loss-of-function of TTG2 was previously shown to reduce or eliminate trichome specification and branching. Here, we report the identification of an allele of TTG2, ttg2-6. In contrast to the ttg2 mutants described before, ttg2-6 displayed unique trichome phenotypes. Some ttg2-6 mutant trichomes were hyper-branched, whereas others were hypo-branched, distorted, or clustered. Further, we found that in addition to specifically activating R3 MYB transcription factor TRIPTYCHON (TRY) to modulate trichome specification, TTG2 also integrated cytoskeletal signaling to regulate trichome morphogenesis. The ttg2-6 trichomes displayed aberrant cortical microtubules (cMTs) and actin filaments (F-actin) configurations. Moreover, genetic and biochemical analyses showed that TTG2 could directly bind to the promoter and regulate the expression of BRICK1 (BRK1), which encodes a subunit of the actin nucleation promoting complex suppressor of cyclic AMP repressor (SCAR)/Wiskott–Aldrich syndrome protein family verprolin homologous protein (WAVE). Collectively, taking advantage of ttg2-6, we uncovered a function for TTG2 in facilitating cMTs and F-actin cytoskeleton-dependent trichome development, providing insight into cellular signaling events downstream of the core transcriptional regulation during trichome development in Arabidopsis.

     
    more » « less
  5. Overlay cognitive radio (CR) networks include a primary and cognitive base station (BS) sharing the same frequency band. This paper focuses on designing a robust symbol-level pre-coding (SLP) scheme where the primary BS shares data and quantized channel state information (CSI) with the cognitive BS. The proposed approach minimizes the cognitive BS transmission power under symbol-wise Safety Margin (SM) constraints for both the primary and cognitive systems. We apply the additive quantization noise model to describe the statistics of the quantized PBS CSI and employ a stochastic constraint to formulate the optimization problem, which is then converted to be deterministic. Simulation results show that the robust SLP protects the primary users from the effect of the imperfect CSI and simultaneously offers significantly improved energy efficiency compared to nonrobust methods. 
    more » « less
    Free, publicly-accessible full text available June 4, 2024
  6. One-bit digital-to-analog converters (DACs) are a practical and promising solution for reducing cost and power consumption in massive multiple-input multiple-output (MIMO) systems. However, the one-bit precoding problem is NP-hard and even more challenging in frequency-selective fading channels compared to the flat-fading scenario. While block-wise processing (BWP) can effectively address the inter-symbol-interference (ISI) in frequency-selective fading channels, its computational complexity and processing delay can be too high for practical implementation. An alternative solution to alleviate the processing complexity and delay issues is symbol-wise processing (SWP) which sequentially designs the transmit signals. However, existing SWP work leaves unwanted interference for later signal designs. In this paper, we propose an SWP approach which can efficiently address the ISI even at the symbol rate. The idea is to design the transmit signal to not only be beneficial for its time slot, but also to provide constructive interference for subsequent symbols. We develop two active ISI processing methods that significantly outperform a conventional approach, one of which that even outperforms the BWP approach at low SNR. 
    more » « less
    Free, publicly-accessible full text available July 2, 2024
  7. Abstract

    Fe-containing transition-metal (oxy)hydroxides are highly active oxygen-evolution reaction (OER) electrocatalysts in alkaline media and ubiquitously form across many materials systems. The complexity and dynamics of the Fe sites within the (oxy)hydroxide have slowed understanding of how and where the Fe-based active sites form—information critical for designing catalysts and electrolytes with higher activity and stability. We show that where/how Fe species in the electrolyte incorporate into host Ni or Co (oxy)hydroxides depends on the electrochemical history and structural properties of the host material. Substantially less Fe is incorporated from Fe-spiked electrolyte into Ni (oxy)hydroxide at anodic potentials, past the nominally Ni2+/3+redox wave, compared to during potential cycling. The Fe adsorbed under constant anodic potentials leads to impressively high per-Fe OER turn-over frequency (TOFFe) of ~40 s−1at 350 mV overpotential which we attribute to under-coordinated “surface” Fe. By systematically controlling the concentration of surface Fe, we find TOFFeincreases linearly with the Fe concentration. This suggests a changing OER mechanism with increased Fe concentration, consistent with a mechanism involving cooperative Fe sites in FeOxclusters.

     
    more » « less
  8. Abstract

    The science of science has attracted growing research interests, partly due to the increasing availability of large-scale datasets capturing the innerworkings of science. These datasets, and the numerous linkages among them, enable researchers to ask a range of fascinating questions about how science works and where innovation occurs. Yet as datasets grow, it becomes increasingly difficult to track available sources and linkages across datasets. Here we present SciSciNet, a large-scale open data lake for the science of science research, covering over 134M scientific publications and millions of external linkages to funding and public uses. We offer detailed documentation of pre-processing steps and analytical choices in constructing the data lake. We further supplement the data lake by computing frequently used measures in the literature, illustrating how researchers may contribute collectively to enriching the data lake. Overall, this data lake serves as an initial but useful resource for the field, by lowering the barrier to entry, reducing duplication of efforts in data processing and measurements, improving the robustness and replicability of empirical claims, and broadening the diversity and representation of ideas in the field.

     
    more » « less
  9. The accurate prediction of the weakening of landfalling tropical cyclones (TC) is of great importance to the disaster prevention but is still challenging. In this study, based on the 6-hourly TC best-track data and global reanalysis data, the relationship between the intensity change prior to landfall of TCs and the energy dissipation rate after landfall over mainland China is statistically analyzed, and the difference between East and South China is compared. Results show that TCs making landfall over East China often experienced pre-landfall weakening and usually corresponded to a rapid decay after landfall, while most TCs making landfall over South China intensified prior to landfall and weakened slowly after landfall. The key factors affecting both pre-landfall intensity change and post-landfall energy dissipation rate are quantitatively analyzed. It is found that the decreasing sea surface temperature (SST), increasing SST gradient, and increasing environmental vertical wind shear are the major factors favoring high pre-landfall weakening occurrence, leading to rapid TC weakening after landfall over East China. In South China, changes in the large-scale environmental factors are relatively small and contribute little to the post-landfall weakening rate. 
    more » « less